The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

نویسندگان

  • Stacie Tardif
  • Étienne Yergeau
  • Julien Tremblay
  • Pierre Legendre
  • Lyle G. Whyte
  • Charles W. Greer
چکیده

The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome

Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subject...

متن کامل

Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenc...

متن کامل

Improvement of petroleum hydrocarbon remediation using the oat plant in the soil treated by poultry manure

This greenhouse experiment aimed to investigate the effects of poultry manure (PM) on the growth of oat plant (Avena sativa) and removal of total petroleum hydrocarbons (TPHs) from soil. The treatments consisted of three TPH levels (4%, 6%, and 8% w/w) and two PM levels (zero and 1%) at three replications. According to the findings, shoot height, number of leaves, and the fresh and dry...

متن کامل

Soil Remediation Using Nano Zero-valent Iron Synthesized by an Ultrasonic Method

A new method for the synthesis of nano zero-valent iron (nZVI) was developed in the present study. Ultrasonic waves, as a novel method, were used to synthesize the nanoparticles. The morphology and surface compositions of the particles were characterized by using FESEM, XRD, BET, and particle size analyzer. The synthesized nanoparticles were then utilized as a Fenton-like catalyst to degrade of...

متن کامل

Removal of Total Petroleum Hydrocarbons (TPHs) from Oil-Polluted Soil in Iran

Phytoremediation is an emerging environmental-friendly technology that can be a promising solution to remediate oil-polluted soils. The impact of high amount of hydrocarbons on growth characteristics of burningbushand common flax was evaluated in this survey. The influence of organic fertilizers was also assessed on growth of plant species in oil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016